# Number System Questions With Solutions Q No 41 to Q No 60

In this post, you will get some important **Number System Questions with Solutions Q No 41 To Q No 60**. Questions will be solved soon.

If you can solve these **Number Systems Question with Solutions Q No 41 To Q No 60**. then please send us the solutions on my contact email: [email protected].

Read More : Learn About Number System

**Ques No 41:**

What is the unit digit of N, if N = (289)^{5} x (587)^{7} x (1156)^{9} x (17)^{15}

**Options:**

A. 8

B. 5

C. 3

D. 6

**Solution:**

**Ques No 42:**

The numbers 1 to 29 are written side by side as follows 1234567891011……2829. If the number is divided by 9, then what is the remainder?

**Options:**

A. 0

B. 1

C. 2

D. 3

**Solution:**

**Ques No 43:**

The smallest integral value of x, for which is an integer is

**Options:**

A. 1

B. -1

C. 7

D. -7

**Solution:**

**Ques No 44:**

The sum of the digits of two digit number is 11, if the digits are reversed the number decreases by 45 The number is

**Options:**

A. 38

B. 68

C. 74

D. 83

**Solution:**

**Ques No 45:**

If a^{2} – b^{2} = 13 where a and b natural numbers, then value of a is

**Options:**

A. 6

B. 7

C. 8

D. 9

**Solution:**

**Ques No 46:**

If 56^{2} – 49^{2} = 7p, then p is equal is

**Options:**

A. 115

B. 95

C. 105

D. 104

**Solution:**

**Ques No 47:**

When 75% of a two-digit number is added to it, the digits of the number are reversed. Find the ratio of the unit’s digit to the ten’s digit in the original number

**Options:**

A. 1:2

B. 1:4

C. 2:1

D. 3:2

**Solution:**

**Ques No 48:**

How many zeroes will be there in the expansion of the expression 1^{1}×2^{2}×3^{3}×4^{4}……..×100^{100}?

**Options:**

A. 1200

B. 1232

C. 1300

D. 1296

**Solution:**

**Ques No 49:**

The number obtained by interchanging the two digits of a two digit number is less than the original number by 27. If the difference between the two digits of the number is 3, what is the original number?

**Options:**

A. 74

B. 63

C. 85

D. Can’t be determined

**Solution:**

**Ques No 50:**

If x is a positive integer such that 2x + 12 is perfectly divisible by ‘x’, then the number of possible values of ‘x’ is

**Options:**

A. 2

B. 5

C. 6

D. 12

**Solution:**

**Ques No 51:**

If A = , B = , C = (0.3)^{2}, D = (-1.2)^{2}, then

**Options:**

A. A > B > C > D

B. D > A > B > C

C. D > B > C > A

D. D > C > A > B

**Solution:**

**Ques No 52:**

The unit digit in the expression (36^{234})(33^{512})(39^{180})(54^{29})–(25^{123})(31^{512}) will be

**Options:**

A. 8

B. 0

C. 6

D. 5

**Solution:**

**Ques No 53:**

Find the value of x in

**Options:**

A. 1

B. 3

C. 6

D. 12

**Solution:**

**Ques No 54:**

xy is a number that is divided by ab where xy < ab and gives a result 0. Xyxyxy. . . then ab result

**Options:**

A. 11

B. 33

C. 99

D. 66

**Solution:**

**Ques No 55:**

V is product of first 41 natural numbers. A = V + 1. The number of primes among A + 1, A + 2, A + 3, A + 4………………A + 39, A + 40 is

**Options:**

A. 1

B. 2

C. 3

D. 0

**Solution:**

**Ques No 56:**

If n is integer such that n x n = n + n, then the number of such number n, is

**Options:**

A. 0

B. 1

C. 2

D. 3

**Solution:**

**Ques No 57:**

Given that a, b are odd and c, d are even, then

**Options:**

A. a^{2} – b^{2} + c^{2} – d^{2} is always divisible by 4

B. abc + bcd + cda + dab is always divisible by 4

C. a^{4} + b^{4} + c^{3} + d^{3} + c^{2}b + a^{2}b is always odd

D. a + 2b + 3c + 4d is odd

**Solution:**

**Ques No 58:**

A positive number whose reciprocal equals one less than the number, is

**Options:**

A.

B.

C.

D.

**Solution:**

**Ques No 59:**

Which is one of the numbers listed below is not a divisor of the number N = (2^{30} – 1), is equal to

**Options:**

A. 2^{5} – 1

B. 2^{5} + 1

C. 2^{6} – 1

D. 2^{10} + 1

**Solution:**

**Ques No 60:**

The remainder when (x^{51} + 51) is divided by (x + 1), is:

**Options:**

A. 0

B. 1

C. 51

D. 50

**Solution:**